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ABSTRACT. Let k be a field of characteristic p > 0 and let F be a one dimensional
commutative formal group over k. The endomorphisms of a k-algebra A that defines an
action of F on A when A is isomorphic to the quotient B/pB, with B torsion free Z-
algebra, are studied.

1. Introduction

If F = F (X, Y ) is a one dimensional commutative formal group over a field k and A
is a k-algebra, an action D of F on A is a sequence of additive endomorphisms {Di}i∈N

of A such that D0 = idA and
∑

i,j Di ◦ Dj(a)XiY j =
∑

t Dt(a)F (X, Y )t, for every
a ∈ A.

D1 is always a derivation while the Di’s, for i > 1, are only additive endomorphisms
such that

Dn(ab) =
∑

i+j=n

Di(a)Dj(a), for every n.

If F = Fa = X + Y , an action of F on a k-algebra is a strongly integrable differentia-
tion in the sense of H.Matsumura [1, 2]. In particular if char(k) = 0, every endomorphism

Di can be expressed in terms of D1, for every i. In fact it is Di =
1
i!

D1, for every i.

If char(k) = p > 0 and F = Fa, if one considers the endomorphisms D1, Dp, . . . , Dpi , . . . ,
there is the nice formula [3]:

Dn =
Dn0

1 Dn1
p · · ·Dnr

pr

n0!n1! · · ·nr!
, for every n > 0,

while if F = Fm = X + Y + XY , it is

Dn =
(D1)n0(Dp)n1 . . . (Dpr )nr

n0!n1! . . . nr!
, for every n > 0

where (Dpi)m = Dpi(Dpi − 1) . . . (Dpi − m + 1) =
∏m−1

t=0 (Dpi − t) and n = n0 +
n1p + · · ·+ nrp

r, 0 ≤ ni < p, is the p-adic expansion of n [4].
The problem is the following:
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Let char(k) = p > 0 and let F be a one dimensional commutative formal group over
k. Is it possible to express every Dn in terms of D1, Dp, . . . , Dpi , . . . , as when F = Fa

and F = Fm?

We give a positive answer when F acts on a k-algebra A which is a quotient of a torsion
free Z-algebra B, modulo the ideal generated by the prime number p, p ∈ B, that is
A ' B/pB.

Precisely we prove the following result (Theorem 3.1):

Let k be a separably closed field of characteristic p > 0, F a one dimensional commutative
formal group over k of height greater than 2, and let D : A → A[[X]] be an action of F
on a k-algebra A that is isomorphic to B/pB, where B is a Z-algebra and B ↪→ B⊗Z Q,
with Q the rational number field.

Then we have

Di ◦Dpj =
(

i + pj

i

)
Di+pj ,

for j = 0, 1 and for every i ∈ N .
From this expression, it will be possible to express every Dn in terms of D1, Dp, . . . , Dpi , . . .

(Corollary 3.3). Our result uses in a crucial way the structure theorem of one dimensional
formal group over a separably closed field ([5], Chap. III, §2, Theorem 2).

2. Preliminaries

All rings are assumed to be commutative with a unit element. A local ring is assumed
to be noetherian.

We recall that a one dimensional commutative formal group F over a ring k is a formal
series F (X, Y ) ∈ k[[X, Y ]] such that

i) F (X, 0) = X , F (0, Y ) = Y ,
ii) F (F (X, Y ), Z) = F (X, F (Y, Z))

iii) F (X, Y ) = F (Y, X)

For simplicity a one dimensional commutative formal group over a ring k will be called
a formal group over k.

The most known formal groups are the additive formal group Fa = X + Y and the
multiplicative formal group Fm = X + Y + XY .

An action of the formal group F on a k-algebra A is a morphism of k-algebras D :
A → A[[X]] such that if D(a) =

∑
i Di(a)Xi, a ∈ A, then

D0 = idA and
∑
i,j

Di ◦Dj(a)XiY j =
∑

t

Dt(a)F (X, Y )t,

or every a ∈ A.
If F and G are formal groups over k, then a homomorphism f : F → G is a power series
f(X) ∈ k[[X]] such that f(0) = 0 and f(F (X, Y )) = G(f(X), f(Y )).

A homomorphism f is said to be an isomorphism if f ′(0) is an invertible element in k
(f ′(X) = ∂f/∂X).
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Moreover for any formal group F there exists a unique formal power series i(X) ∈ k[[X]]
such that i(0) = 0 and F (X, i(X)) = 0 = F (i(X), X).

Now, for later use, let us recall the notion of height of a formal group. Let F =
F (X, Y ) be a formal group over a ring k. As F (X, Y ) = F (Y, X), the induction for-
mula: [1]F (X) = X , [m]F (X) = F ([m − 1]F (X), X), m ∈ N , determine a sequence
of endomorphisms of the group F . If pR = 0, then ([5], Chap. III, §3, Theorem 2) each
homomorphism f : G → G′ of formal groups over k can be uniquely written in the form
f(X) = f1(Xph

), where f1(X) ∈ k[[X]], f ′1(0) 6= 0, and h ∈ N ∪∞ (h = ∞, if f = 0).
The number h is called the height of f .

Now the height of a formal group F over a field k of characteristic p > 0 is defined to
be the height of the endomorphism [p]F (X). We denote it by Ht(F ).

It is easy to see that Ht(F ) ≥ 1 for any F and that Ht(Fa) = ∞, Ht(Fm) = 1.
Moreover if Ht(F ) = Ht(F ′) then F ' F ′.

Let k be a separably closed field of characteristic p>0, we want to study the action of a
formal group F over k on a restricted class A of k-algebras. More precisely we will study
k-algebras such that A ' B/pB, where B is a Z-algebra and B ↪→ B ⊗Q, Z is the ring
of integers and Q is the field of rationals.

We recall the following:

Theorem 2.1. ([6], Lemme 19.7.I.3) Let (A,m, K) be a local Z-algebra with char(K) =
p > 0 and let B0 be a K-algebra which is a regular complete local ring. Then there exists
a topological local A - algebra B with respect to the topology given by the maximal ideal
and such that

i) B is a complete ring which is a flat A - module
ii) B0 is K-isomorphic to B ⊗A K = B/mB.

The previous theorem is due to Grothendieck. It is interesting to look at it because
thanks to it we can have example of the algebras A considered during the paper.

Example 2.2. Let Zp = (Z, pZ)∧ be the local complete ring of the p-adic integers, with
p ∈ Z, p a prime number. Zp is a topological ring with respect to the pZp-adic topology.

Set B = Zp[[X]], B is a complete local ring whose maximal ideal is (pZp, X)B and
B is a topological ring with respect to the (pZp, X)B-adic topology. Since the standard
injection Zp ↪→ Zp[[X]] is a local continous ring homomorphism, it follows that B is a
topological Zp-algebra which is a flat Zp-module.

Moreover put B0 = Fp[[X]], where Fp = Zp/pZp is the prime field, which is a perfect
field, it is

B0 = Zp/pZp[[X]] ' Zp/pZp ⊗Zp Zp[[X]].
Since B = Zp[[X]] is a flat Zp-module, from the exactness of the sequence of Zp-modules:

0 → pZp
j→ Zp

π→ Zp/pZp → 0,

where j is the injection and π is the standard epimorphism, the exactness of the following
sequence of Zp-modules follows:

0 → pZp ⊗ Zp[[X]]
j⊗1Zp[[X]]−→ Zp ⊗ Zp[[X]]

π⊗1Zp[[X]]−→ Zp/pZp ⊗ Zp[[X]] → 0,
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(⊗ = ⊗Zp). Hence:

Zp/pZp ⊗Zp Zp[[X]] '
Zp ⊗Zp Zp[[X]]
pZp ⊗Zp

Zp[[X]]
' Zp[[X]]/pZp[[X]]

and so B0 ' Zp[[X]]/pZp[[X]] = B/pB.
Finally Zp is a Z-flat module, Zp[[X]] is a flat Zp-module and B is a flat Z-module too.

3. Formal group actions on special algebras

Our main result is the following:

Theorem 3.1. Let k be a separably closed field of characteristic p > 0, F a formal group
over k, and D : A → A[[X]] be an action of F on a k-algebra A.

Suppose A ' B/pB, where B is a Z-algebra such that B ↪→ B ⊗Z Q. Then
i) if Ht(F) ≥ 2

Di ◦D1 = (i + 1)Di+1,

for every i ∈ N ;
ii) if Ht(F) > 2

Di ◦Dp =
(

i + p

i

)
Di+p,

for every i ∈ N .

Proof. When F is a formal group of height h ≥ 2, F may be replaced by a formal group
F̄h constructed as follows.

Consider the following power series from Q[[X, Y ]] :

fh(X) = X +
∞∑

r=1

p−rXprh

(f∞(X) = X).

If f−1
h is the inverse homomorphism determined by fh, we put

Fh(X, Y ) = f−1
h (fh(X) + fh(Y )).

Then Fh = Fh(X, Y ) is a formal group over Z and

[p]Fh
(X) ≡ Xph

(mod pZ[[X]])

(Xp∞ = 0) ([5], Chap. I, §3.2). Hence we can define F̄h as the formal group over
k ⊃ Z/pZ obtained by reducing all the coefficients of Fh modulo p. It follows that
Ht(F̄h) = h = Ht(F ) and so we can assume that the formal group F is equal to F̄h when
Ht(F ) ≥ 2 ([5], Chap. III, §3,Theorem 2).

Now we can prove the theorem.
Consider the formal group Fh(X, Y ) over Z and an action D of this group on the Z-

algebra B, we have

(1)
∑

i,r≥0

Di ◦Dr(a)XiY r =
∑
s≥0

Ds(a)Fh(X, Y )s

for all a ∈ A.
i): the proof is similar to that of ([7], Lemma 4.1). But we include it for completeness.
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Differentiating both sides of (1) with respect to Y and putting Y = 0 one obtains:∑
i

Di ◦D1(a)Xi =
∑

s

sDs(a)Fh(X, 0)s−1 ∂Fh(X, 0)
∂Y

=

=
∑

s

sDs(a)
∂Fh(X, 0)

∂Y
Xs−1

From the equality fh(Fh(X, Y )) = fh(X) + fh(Y ), by differentiating with respect to
Y , we have:

f ′h(X)
∂Fh

∂Y
= 1.

Hence

f
′
h(X)

∂Fh

∂Y
= 1,

where f
′
h(X) is obtained by reducing all the coefficients of f ′h(X) modulo p. Since

f ′h(X) = 1 +
∞∑

r=1

pr(h−1)Xprh−1

and h ≥ 2, f
′
h(X) = 1. Finally

∂Fh

∂Y
= 1 and we get the stated result.

ii): Differentiating both sides of (1) p-times with respect to Y , one obtains:

(2)
∑
i,r

r(r − 1) . . . (r − p + 1)Di ◦Dr(a)XiY r−p =

∑
s

s(s− 1) . . . (s− p + 1)Ds(a)Fh(X, Y )s−p

(
∂Fh(X, Y )

∂Y

)p

+ terms with the factor
∂tFh(X, Y )

∂Y t
, t ≥ 2.

From the equality fh(Fh(X, Y )) = fh(X) + fh(Y ), by differentiating with respect to
Y , we have:

(3) f ′h(Fh(X, Y ))
∂Fh

∂Y
= f ′h(Y ).

Moreover

f ′h(X) = 1 +
∞∑

r=1

pr(h−1)Xprh−1.

Since h > 2, h− 1 > 1 and r(h− 1) > 1, we have

f ′′h (X) =
∞∑

r=1

pr(h−1)(prh − 1)Xprh−2

and going on we obtain:

f
(p)
h (X) =

∞∑
r=1

pr(h−1)(prh − 1) . . . (prh − p + 1)Xprh−p,

but h > 2 and so f ′′h (0) = · · · = f
(p)
h (0) = 0.
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If we calculate (3) for Y = 0, we have

(4) f ′h(X)
∂Fh(X, 0)

∂Y
= 1.

By reducing now (4) mod p,
∂F̄h(X, 0)

∂Y
= 1, f ′h(X) = 1.

Differentiating (3) with respect to Y we obtain

(5) f ′′h (Fh(X, Y ))
(

∂Fh(X, Y )
∂Y

)2

+

+f ′h(Fh(X, Y ))
∂2Fh(X, Y )

∂Y 2
= f ′′h (Y ).

If we calculate (5) for Y = 0,

f ′′h (X)
(

∂Fh(X, 0)
∂Y

)2

+ f ′h(X)
∂2Fh(X, 0)

∂Y 2
= 0,

and so

(6) f ′h(X)
∂2Fh(X, 0)

∂Y 2
= −f ′′h (X)

(
∂Fh(X, 0)

∂Y

)2

Finally

(7)
∂2Fh(X, 0)

∂Y 2
= −f ′h(X)−1f ′′h (X)

(
∂Fh(X, 0)

∂Y

)2

.

Claim. f ′′h (X) has p2 as a factor for h > 2.
In fact, since h > 2, r(h− 1) > 1 and from

f ′′h (X) =
∞∑

r=1

pr(h−1)(prh − 1)Xprh−2,

we get the assertion.

By reducing (6) mod p, we have
∂2F̄h(X, 0)

∂Y 2
= 0, since f ′′h (X) contains p2 as a factor.

In general, from (7), we obtain that
∂tFh(X, 0)

∂Y t
contains p2 as a factor, for t ≥ 2, and

that
∂tF̄h(X, 0)

∂Y t
= 0, for t ≥ 2.

Consider now (1). For Y = 0, we obtain∑
i

(p(p− 1) . . . 1) Di ◦Dp(a)Xi =

=
∑
s≥0

s(s− 1)(s− 2) . . . (s− p + 1)Ds(a)Xs−p

(
∂Fh(X, 0)

∂Y

)p

+

+ terms with the factor p2.
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∑
i

p!Di ◦Dp(a)Xi =
∑
s≥p

p!
(

s

p

)
Ds(a)Xs−p

(
∂Fh(X, 0)

∂Y

)p

+

+ terms with the factor p2.

Since we can divide by p (p is not a 0-divisor in B), we have

∑
i

(p− 1)!Di ◦Dp(a)Xi =
∑
s≥p

(p− 1)!
(

s

p

)
Ds(a)Xs−p

(
∂Fh(X, 0)

∂Y

)p

+

+ terms with the factor p.

By reducing mod p, we have:∑
i≥0

Di ◦Dp(a)Xi =
∑
s≥p

(
s

p

)
Ds(a)Xs−p.

Hence

Di ◦Dp =
(

i + p

i

)
Di+p,

for every i ∈ N . �

Remark 3.2. Observe that
(

i + p

i

)
6=

(
i

i

)
in characteristic p > 0.

Corollary 3.3. Under the same hypotheses of Theorem 3.1, let D : A → A[[X]] be an
action of F on the k-algebras A. If D(a) =

∑
i≥0 Di(a)Xi, put

δ0 = D1, δ1 = Dp, δ2 = Dp2 , . . . , δi = Dpi , . . .

we have

a) if Ht(F ) > 2
i) δiδj = δjδi for i = 0, 1 and j ≥ 0,

ii) δp
i = 0 for i = 0, 1,

iii) for every m > 0

Dm =
δm0
0 δm1

1 . . . δmr
r

m0!m1! . . .mr!
,

where m = m0 + m1p + · · · + mrp
r, 0 ≤ mi < p, is the p-adic expansion

of m.
b) if Ht(F ) = 1

i’) δiδj = δjδi for all i, j ≥ 0,
ii’) δp

i = δi for all i,
iii’) for every m > 0

Dm =
(δ0)m0(δ1)m1 . . . (δr)mr

m0!m1! . . .mr!
,

where (δi)m = δi(δi−1) . . . (δi−m+1) =
∏m−1

k=0 (δi − k).
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Proof. If we suppose that k is separably closed, the equality Ht(F ) = Ht(F ′) imply that
F is isomorphic to F ′. More precisely, for any h ∈ N , there exists a formal group G (that
is unique up to isomorphisms) such that Ht(G) = h.

Then a) follows from Theorem 3.1 and b) from [8]. �

Remark 3.4. Let k be a field and let H be a finite dimensional Hopf algebra over k with
comultiplication ∆ : H → H ⊗ H (⊗ = ⊗k), antipode S : H → H , and counity
ε : H → k.

A coaction of H on a k-algebra is a morphism of algebras D : A → A ⊗ H such that
(1⊗ ε)D ' 1 and (1⊗∆)= (D ⊗ 1)D.

From now on let k be a field of characteristic p > 0.
We consider the Hopf algebra which ”lives” on the coalgebras Cn = (

∑pn−1
s=0 kes,∆, ε),

n=0,1,..., where ∆(es) =
∑

i+j=s ei ⊗ ej and ε(es) = δs,0 (Kroneker delta). More pre-
cisely, we say that a Hopf algebra H ”lives” on Cn if H , as a coalgebra, is equal to Cn.

For example Hn(Fa) = (Cn,M : Cn ⊗ Cn → Cn, S : Cn → Cn, η : k → Cn),
n=0,1,..., where multiplication M is given by M(ei ⊗ ej) =

(
i+j

i

)
ei+j if i + j < pn and

0, otherwise, antipode S is determined by the equalities
∑

i+j=s eiS(ej) = δs,0, and the
structural map η is defined by η(t) = te0.

If we fix a natural number n we can consider the Hopf algebra H which ”lives” on the
algebra Hn = k[X]/(Xpn

). We say also that H is a Hopf algebra structure on Hn.
A coaction of such a Hopf algebra H on a k-algebra A is a morphism of k-algebras

such that if D(a) =
∑

i Di(a)⊗ xi,a ∈ A, with x = X + (Xpn

) and Di : A → A addive
endomorphisms,then

D0 = 1, and Ds(ab) =
∑

i+j=s

Di(a)Dj(b) for all 0 ≤ s < pn,

with a, b ∈ A,i.e. {Di : 0 ≤ i < pn} is an higher derivation of order pn in A.
For a given formal group F over the field k and a natural n we define the Hopf algebra

structure Hn(F ) on the algebra Hn = k[X]/(Xpn

) as follows:
a) comultiplication ∆ : Hn → Hn ⊗ Hn ' k[X, Y ]/

(
Xpn

, Y pn)
defined by

∆(x) = F (x, y), where x = X +
(
Xpn

, Y pn)
and y = Y +

(
Xpn

, Y pn)
, and we

identify x = X + (Xpn

) with x = X +
(
Xpn

, Y pn)
.

b) antipode S : Hn → Hn given by S(x) = i(x)
c) counity ε : Hn → k defined by ε(x) = 0.

We can easly verify that if F is a formal group over k and A a k-algebra a coaction of
Hn(F ) on A is a morphism of algebras D : A → A⊗Hn(F ) such that D0 = 1 and∑

0≤i,j<pn

DiDj(a)⊗ xiyj =
∑

0≤s<pn

Ds(a)⊗ F (x, y)s

for all a ∈ A.
By using the same techniques of Theorem 3.1, the following result holds:
Let k be a separably closed field of characteristic p>0, F a formal group over k, and

D : A → A⊗Hn(F ) be a coaction of Hn(F ) on a k-algebra A.
Suppose

i) A ' B/pB, with B Z-algebra such that B → B ⊗Q is injective
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ii) Ht(F) > 2
Then

Di ◦Dpj =
(

i + pj

i

)
Di+pj ,

for j = 0, 1 and 0 ≤ i < pn.
In fact put Hn(F ) = Hn. It is easy to verify that for any action D : A → A[[X]],

D(a) =
∑

i≥0 Di(a)Xi of a formal group F (X, Y ), the application:

D(n) : A → A⊗Hn, with D(n)(a) =
∑

0≤i<pn

Di(a)⊗ xi,

x = X + (Xpn

), ∆(x) = F (x, y), is a coaction of the Hopf algebra Hn on A.
Hence ∑

0≤i<pn

Di ◦Dp(a)⊗ xi =
∑
s≥p

(
s

p

)
Ds(a)⊗ xs−p

and so

Di ◦Dp =
(

i + p

i

)
Di+p,

for every i, 0 ≤ i < pn.
The case j = 0 follows from ([7], Lemma 4.1).
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